THE DEFAULT IN ISLAMIC PEER TO PEER LENDING: AN APPLICATION OF THE GENERAL STRAIN THEORY
Main Article Content
Abstract
While the Islamic peer to peer (P2P) lending is useful especially during the present Covid-19 Pandemic, its default risk remains high. In this study, we apply the extended general strain theory to investigate borrowers’ default intention on the Islamic P2P lending during the pandemic period. Using the SEM-PLS method to analyse data gathered from a survey, we find economic pressure and socialization difficulty to be significant in increasing negative affects (life dissatisfaction, perceived unfairness, and inferiority feeling) and hence indirectly affecting the willingness to repay. Further, we find that socialization difficulty does not seem to have direct influences on default intention. Finally, moral norms appear to be a significant moderating factor in the framework. These should contribute to a better scoring system of the Islamic P2P lending.
Downloads
Article Details
Issue
Section
Journal of Islamic Monetary Economics and Finance is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
Agnew, R. (1992). Foundations for a general strain theory of crime and delinquency. Criminology, 30(1), 47-87.
Agnew, R. (2010). General strain theory. In Krohn, M.D., Lizotte, A.J. and Hall, G.P. (Eds), Handbook on crime and deviance, pp. 169-185. New York, NY: Springer.
Akdoğan, R., & Çimşir, E. (2019). Linking inferiority feelings to subjective happiness: Self-concealment and loneliness as serial mediators. Personality and Individual Differences, 149, 14-20.
Aldasoro, I., Cho, C. H., & Park, K. (2022). Bank solvency risk and funding cost interactions: Evidence from Korea. Journal of Banking & Finance, 134, 106348.
Alfaro, E., García, N., Gámez, M., & Elizondo, D. (2008). Bankruptcy forecasting: An empirical comparison of AdaBoost and neural networks. Decision Support Systems, 45(1), 110-122.
Anh, N. T. T., Hanh, P. T. M., & Le Thu, V. T. (2021). Default in the US peer-to-peer market with covid-19 pandemic update: An empirical analysis from lending club platform. International Journal of Entrepreneurship, 25(7), 1-19.
Ardianto, P. (2020). OJK: Pembiayaan bermasalah sejumlah fintech lending mulai membaik. Retrieved on June 12, 2021 from https://investor.id/finance/224105/ojk-pembiayaan-bermasalah-sejumlah-fintech-lending-mulai-membaik
Ascarya, & Rahmawati, S. (2018). Analysis of the determinants of micro enterprises graduation. Journal of Islamic Economics, Banking and Finance, 14(1), 1-49.
Ascarya, A. (2017). The Root causes of financial crisis in islamic economic perspective. Ekonomi Islam, 8(2), 136-149.
Azzimonti, M., De Francisco, E., & Quadrini, V. (2014). Financial globalization, inequality, and the rising public debt. American Economic Review, 104(8), 2267-2302.
Barclay, D., Higgins, C. & Thompson, R. (1995). The Partial least squares (PLS) approach to causal modeling: Personal computer adoption and use as an illustration. Technology Studies, 2(2), 285-309.
Bareksa. (2020). Aftech: Transaksi fintech melonjak semasa pandemic covid-19. Retrieved on July 12, 2021 from https://www.bareksa.com/berita/berita-ekonomi-terkini/2020-08-24/aftech-transaksi-fintech-melonjak-semasa-pandemi-covid-19
Ban, J., & Lee, H. (2020). The role of empathy in crowdfunding channel platform. Journal of Distribution Science, 18(10), 15–23.
Bazarbash, M. (2019). Fintech in financial inclusion: machine learning applications in assessing credit risk. International Monetary Fund.
Bekele, G., Chowdhury, R. H., & Rao, A. (2016). Analysis of default behavior of borrowers under Islamic versus conventional banking. Review of Behavioral Finance, 8(2), 156-173.
Bella, F. I. (2020). Optimization of Islamic peer-to-peer lending for micro and small enterprises (MSEs) after pandemic of covid-19. Journal of Islamic Economic Laws, 3(2), 108-123.
Bholat, D., & Atz, U. (2016). Peer-to-peer lending and financial innovation in the United Kingdom (April 29, 2016). Bank of England Working Paper No. 598, Available at SSRN: https://ssrn.com/abstract=2774297.
Bursztyn, L., & Jensen, R. (2017). Social image and economic behavior in the field: Identifying, understanding, and shaping social pressure. Annual Review of Economics, 9(1), 131-153.
Bursztyn, L., Fiorin, S., Gottlieb, D., & Kanz, M. (2019). Moral incentives in credit card debt repayment: Evidence from a field experiment. Journal of Political Economy, 127(4), 1641-1683.
Cavalera, C. (2020). Covid-19 psychological implications: The role of shame and guilt. Frontiers in Psychology, 11, 57182. https://doi.org/10.3389/fpsyg.2020.571828
Chen, X., Huang, B., & Ye, D. (2019). Gender gap in peer-to-peer lending from China. Journal of Banking & Finance.
Chen, X., Zhou, L., & Wan, D. (2016). Group social capital and lending outcomes in the financial credit market: An empirical study of online peer-to-peer lending. Electronic Commerce Research and Applications, 15, 1-13.
Croux, C., Jagtiani, J., Korivi, T., & Vulanovic, M. (2020). Important factors determining fintech loan default: Evidence from a lending club consumer platform. Journal of Economic Behavior & Organization, 173, 270-296
Dorfleitner, G., Priberny, C., Schuster, S., Stoiber, J., Weber, M., de Castro, I., & Kammler, J. (2016). Description-text related soft information in peer-to-peer lending–Evidence from two leading European platforms. Journal of Banking & Finance, 64, 169-187.
de Castro Vieira, J. R., Barboza, F., Sobreiro, V. A., & Kimura, H. (2019). Machine learning models for credit analysis improvements: Predicting low-income families’ default. Applied Soft Computing, 83, 105640.
de Castro, I., & Kammler, J. (2016). Description-text related soft information in peer-to-peer lending–Evidence from two leading European platforms. Journal of Banking & Finance, 64, 169-187.
De Pedraza, P., Guzi, M., & Tijdens, K. (2020). Life Dissatisfaction and Anxiety in COVID-19 pandemic. MUNI ECON Working Paper No. 2020-03. Masaryk University, Faculty of Economics and Administration, Brno.
Du, J., & Pan, W. (2021). Examining energy saving behaviors in student dormitories using an expanded theory of planned behavior. Habitat International, 107, 102308.
Dunkel, C. S., & Harbke, C. (2017). A review of measures of Erikson’s stages of psychosocial development: Evidence for a general factor. Journal of Adult Development, 24(1), 58-76.
Emekter, R., Tu, Y., Jirasakuldech, B., & Lu, M. (2015). Evaluating credit risk and loan performance in online Peer-to-Peer (P2P) lending. Applied Economics, 47(1), 54-70.
Elshaer, I. A., & Saad, S. K. (2021). Entrepreneurial resilience and business continuity in the tourism and hospitality industry: The role of adaptive performance and institutional orientation. Tourism Review, vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/TR-04-2021-0171
Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4.
Everett, C. R. (2015). Group membership, relationship banking and loan default risk: The case of online social lending. Banking and Finance Review, 7(2), 15-54.
Ewuola, S. O., & Williams, S. K. T. (1995). Effects of institutional and borrower characteristics on loan recovery: A study of Ondo State agricultural credit corporation. Agrosearch, 1(2), 109-116
Fornell, C. & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, XVIII(February), 39-50.
Fox, J. J., Suzanne, B. Letkiewicz, J. C., & Montalto, C. P. (2017). College student debt and anticipated payment difficulty. Journal of Student Financial Aid, 47(2), 111-135.
García, V., Marqués, A. I., & Sánchez, J. S. (2019). Exploring the synergetic effects of sample types on the performance of ensembles for credit risk and corporate bankruptcy prediction. Information Fusion, 47, 88-101.
Ganbat, M., Batbaatar, E., Bazarragchaa, G., Ider, T., Gantumur, E., Dashkhorol, L., Altantsatsralt, K., Nemekh, M., Dashdondog, E., & Namsrai, O-E. (2021). Effect of psychological factors on credit risk: A case study of the microlending service in Mongolia. Behavioral Sciences, 11(4), 47. https://doi.org/10.3390/bs11040047
Guiso, L., Herrera, H., & Morelli, M. (2016). Cultural differences and institutional integration. Journal of International Economics, 99(Supplement 1), S97-S113.
Guo, Y., Zhou, W. Luo, C. Liu, C., & Xiong, H. (2016). Instance-based credit risk assessment for investment decisions in P2P lending. European Journal of Operational Research, 249(2), 417–26. Https://doi:10.1016/j.ejor.2015.05.050.
Gomber, P., Koch, J. A., & Siering, M. (2017). Digital finance and fintech: Current research and future research directions. Journal of Business Economics, 87(5), 537-580.
Goode, E. (2019). Deviant behavior. New York: Routledge.
Gupta, S. (2020). Social distancing comes with psychological fallout. Retrieved on April 25, 2020, from ScienceNews: https://www.sciencenews.org/article/coronavirus-covid-19-social-distancing-psychological-fallout
Haase, K. R., Cosco, T., Kervin, L., Riadi, I., & O'Connell, M. E. (2021). Older adults’ experiences with using technology for socialization during the COVID-19 pandemic: Cross-sectional survey study. JMIR aging, 4(2), e28010.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2013). Partial least squares structural equation modeling: Rigorous application, better result and higher acceptance. Long Range Planning, 46(1-2), 1-12.
Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2010). Multivariate data analysis. Seventh Edition. Upper Saddle River, New Jersey: Prentice Hall.
Hasan, R., Hassan, M. K., & Aliyu, S. (2020). Fintech and Islamic finance: Literature review and research agenda. International Journal of Islamic Economics and Finance (IJIEF), 3(1), 75-94.
Hasibuan, L. (2021). Survei, banyak pekerja RI dipotong gaji selama pandemi. Retrieved on March 1, 2022, from https://www.cnbcindonesia.com/lifestyle/20210715140220-33-261143/survei-banyak-pekerja-ri-dipotong-gaji-selama-pandemi
Hasnan, B. (2019). A framework for crowdfunding platforms to match services between funders and fundraisers. Journal of Industrial Distribution and Business, 10(4), 25–31. https://doi. org/10.13106/ijidb.2019.vol10.no4.25.
Hau, H., Huang, Y., Shan, H., & Sheng, Z. (2018). Fintech credit, financial inclusion and entrepreneurial growth. Unpublished working paper.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115-135.
Hikmah, N., Malik, Z. A., & Irwansyah, S. (2020). Tinjauan Fatwa DSN No. 117/DSN-MUI/II/2018 tentang Layanan Fintech Berdasarkan Prinsip Syariah terhadap Layanan Pinjaman Online di PT Alami Fintek Sharia. Prosiding Hukum Ekonomi Syariah, 6(2), 660-663.
Huang, J., & Fang, Y. (2021). Income inequality, neighbourhood social capital and subjective well-being in China: Exploration of a moderating effect. International journal of environmental research and public health, 18(13), 6799. https://doi.org/10.3390/ijerph18136799
Hubley, A. M. (2014). Discriminant validity. In: Michalos A. C. (eds) Encyclopedia of quality of life and well-being research. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0753-5_571
Hulland, J. (1999). Use of partial least square (pls) in strategic management research: A review of four recent studies. Strategic Management Journal, 20(2), 195-204.
Idris, M. (2021). Apa itu slik OJK? Ini prosedur cara mengeceknya [What is OJK slik? This is the procedure how to check it]. Retrieved on August 15, 2021 from https://money.kompas.com/read/2021/03/02/123043926/apa-itu-slik-ojk-ini-prosedur-cara-mengeceknya?page=all
International Labour Organization. (2020). Covid-19 and the world of work: Impact and policy responses. Retrieved on January 25, 2022 from https://www.ilo.org/wcmsp5/groups/public/---dgreports/---dcomm/documents/briefingnote/wcms_738753.pdf
Iyer, R., Khwaja, A. I. Luttmer, E. F. P., & Shue, K. (2015). Screening peers softly: Inferring the quality of small borrowers. Management Science, 62(6), 1554–1577. Https://doi:10.1287/mnsc.2015.2181.
Jamal, A. A. A., Ramlan, W. K., Karim, M. A., & Osman, Z. (2015). The effects of social influence and financial literacy on savings behavior: A study on students of higher learning institutions in Kota Kinabalu, Sabah. International Journal of Business and Social Science, 6(11), 110-119.
Khilfah, H. N., & Faturohman, T. (2020). Social media data to determine loan default predicting method in an Islamic online P2P lending. Journal of Islamic Monetary Economics and Finance, 6(2), 243 - 274. https://doi.org/10.21098/jimf.v6i2.1184
Kline, R. B. (1998). Software review: Software programs for structural equation modeling: Amos, EQS, and LISREL. Journal of Psychoeducational Assessment, 16(4), 343-364.
Komite Nasional Ekonomi dan Keuangan Syariah. (2019). Langkah kolaborasi KNKS dalam mendorong ekosistem ekonomi syariah [KNKS collaboration steps in encouraging the sharia economic ecosystem]. Retrieved on November 19, 2021, from https://knks.go.id/storage/upload/1557454250-Afdhal%20Aliasar%20(KNKS)%20-%20IIEFest.pdf
Kou, G., Xu, Y., Peng, Y., Shen, F., Chen, Y., Chang, K., & Kou, S. (2021). Bankruptcy prediction for SMEs using transactional data and two-stage multiobjective feature selection. Decision Support Systems, 140, 113429.
Lea, S. E., Webley, P., & Walker, C. M. (1995). Psychological factors in consumer debt: Money management, economic socialization, and credit use. Journal of Economic Psychology, 16(4), 681-701.
Lee, M. A., & Kawachi, I. (2019). The keys to happiness: Associations between personal values regarding core life domains and happiness in South Korea. PloS one, 14(1), e0209821.
Leiber, M. J., Mack, K. Y., & Featherstone, R. A. (2009). Family structure, family processes, economic factors, and delinquency: Similarities and differences by race and ethnicity. Youth Violence and Juvenile Justice, 7(2), 79-99.
Liao, S. L., & Chang, J. J. (2010). Economic determinants of default risks and their impacts on credit derivative pricing. Journal of Futures Markets, 30(11), 1058-1081.
Lin, X., Li, X., & Zheng, Z. (2017). Evaluating borrower’s default risk in peer-to-peer lending: Evidence from a lending platform in China. Applied Economics, 49(35), 3538–45. https://doi:10.1080/00036846.2016.1262526.
Lin, M., & Viswanathan, S. (2015). Home bias in online investments: An empirical study of an online crowdfunding market. Management Science, 62(5), 1393-1414.
Liu, Y., Finch, B. K., Brenneke, S. G., Thomas, K., & Thao, P. (2020). Perceived discrimination and mental distress amid the Covid-19 pandemic: Evidence from the understanding America Study. American Journal of Preventive Medicine, 59(4), 481-492.
Liu, D., Brass, D. J., Lu, Y., & Chen, D. (2015). Friendships in online peer-to-peer lending. Mis Quarterly, 39(3), 729-742.
Lu, T., Jia, Z., Xu, Y., Huang, L., & Zhang, C. (2016). Psychosocial Factors Lead to Delinquency Itention on Online Peer-To-Peer Lending Platform: A Survey Evidence.
Lund, J. J., Chen, T. T., LaBazzo, G. E., Hawes, S. E., & Mooney, S. J. (2021). The association between three key social determinants of health and life dissatisfaction: A 2017 behavioral risk factor surveillance system analysis. Preventive medicine, 153(December 2021), 106724.
Madinga, N. W., Maziriri, E. T., Chuchu, T., & Magoda, Z. (2022). An investigation of the impact of financial literacy and financial socialization on financial satisfaction: Mediating role of financial risk attitude. Global Journal of Emerging Market Economies, 14(1), 60-75.
McKenzie, K., Michie, A., Murray, A., & Hales, C. (2012). Screening for offenders with an intellectual disability: The validity of the learning disability screening questionnaire. Research in Developmental Disabilities, 33(3), 791-795.
McKinsey. (2020). The coronavirus effect on global economic sentiment. Retrieved on February 24, 2022, from https://www.mckinsey.com/business-functions/strategy-and-corporate-finance/our-insights/the-coronavirus-effect-on-global-economic-sentiment
Ministry of Finance Republic of Indonesia. (2021). Ini kontribusi fintech Indonesia di masa pandemic [This is the contribution of Indonesian fintech during the pandemic]. Retrieved on January 21, 2022, from https://www.kemenkeu.go.id/publikasi/berita/ini-kontribusi-fintech-indonesia-di-masa-pandemi/
Ministry of Finance Republic of Indonesia. (2021). Aktivitas pasar modal Indonesia di era pandemic [Indonesian capital market activities in the pandemic era]. Retrieved on January 22, 2022, from https://www.djkn.kemenkeu.go.id/kpknl-kupang/baca-artikel/13817/Aktivitas-Pasar-Modal-Indonesia-Di-Era-Pandemi.html
Morse, A. (2015), Peer-to-peer crowdfunding: Information and the potential for disruption in consumer lending, Annual Review of Financial Economics, 7(12), 463-482.
Muhammad, R., & Nissa, I. K. (2020). analisis resiko pembiayaan dan resolusi syariah pada peer-to-peer financing. EQUILIBRIUM: Jurnal Ekonomi Syariah, 8(1), 2355-0228.
Najaf, K., Subramaniam, R. K., & Atayah, O. F. (2022). Understanding the implications of FinTech Peer-to-Peer (P2P) lending during the COVID-19 pandemic. Journal of Sustainable Finance & Investment, 12(1), 87-102.
Nurfadilah, D., & Samidi, S. (2021). How the covid-19 crisis is affecting customers’ intention to use Islamic fintech services: Evidence from Indonesia. Journal of Islamic Monetary Economics and Finance, 7, 83 - 114. https://doi.org/10.21098/jimf.v7i0.1318
Niu, B., Ren, J., & Li, X. (2019). Credit scoring using machine learning by combing social network information: Evidence from peer-to-peer lending. Information, 10(12), 397.
Nowak, A., Ross, A., & Yencha, C. (2018). Small business borrowing and peer‐to‐peer lending: Evidence from lending club. Contemporary Economic Policy, 36(2), 318-336.
Othman, Z., Shafie, R., & Hamid, F. Z. A. (2014). Corruption–why do they do it?. Procedia-Social and Behavioral Sciences, 164, 248-257.
Otoritas Jasa Keuangan. (2020). Statistik fintech lending periode Desember 2020 [Statistics of fintech lending for the period of December 2020]. Retrieved on June 10, 2021 from https://www.ojk.go.id/id/kanal/iknb/data-dan-statistik/fintech/Pages/-Statistik-Fintech-Lending-Periode-Desember-2020.aspx
Pérez-Fuentes, M. D. C., Molero Jurado, M. D. M., Martos Martínez, Á., & Gázquez Linares, J. J. (2020). Threat of COVID-19 and emotional state during quarantine: Positive and negative affect as mediators in a cross-sectional study of the Spanish population. PloS one, 15(6), e0235305.
Pişkin, M., & Kuş, M. C. (2019). Islamic online P2P lending platform. Procedia Computer Science, 158, 415-419.
Phillips, J., & Cushman, F. (2017). Morality constrains the default representation of what is possible. Proceedings of the National Academy of Sciences, 114(18), 4649-4654.
Punia, B. K., Punia, V., & Garg, N. (2021). Life dissatisfaction among students: Exploring the role of intrapersonal conflict, insufficient efforts and academic stress. Rajagiri Management Journal, 15(2), 113-128.
Putra, D. A. (2021). Survei Kemnaker: 72.983 pekerja terkena PHK di 4.156 perusahaan imbas pandemic [Kemnaker survey: 72,983 workers have been laid off at 4,156 companies due to the pandemic]. Retrieved on March 1, 2022, from https://www.merdeka.com/uang/survei-kemnaker-72983-pekerja-terkena-phk-di-4156-perusahaan-imbas-pandemi.html
Purwantini, A. H., & Anisa, F. (2021). Fintech payment adoption among micro-enterprises: The role of perceived risk and trust. Jurnal Aset (Akuntansi Riset), 13(2), 274-283
Rahardyan, A. (2021). Rekening pengguna tembus 71,8 juta, fintech lending makin dipercaya [User accounts penetrate 71.8 million, fintech lending is increasingly trusted]. Retrieved on January 25, 2022, from https://finansial.bisnis.com/read/20211209/563/1475716/rekening-pengguna-tembus-718-juta-fintech-lending-makin-dipercaya
Rahardyan, A. (2020). Kinerja Ammana fintek syariah: Umrah anjlok tertolong sektor produktif [Ammana's performance in Islamic fintech: Umrah plummeted, helped by the productive sector]. Retrieved on January 12, 2022, from https://finansial.bisnis.com/read/20200804/563/1274659/kinerja-ammana-fintek-syariah-umrah-anjlok-tertolong-sektor-produktif
Rebellon, C. J., Barnes, J. C., & Agnew, R. (2015). A unified theory of crime and delinquency: Foundation for a biosocial criminology. In M. DeLisi & M. G. Vaughn (Eds.), The Routledge international handbook of biosocial criminology (pp. 1–21). Routledge/Taylor & Francis Group.
Reddy, Rangga & Attada, T. A. (2020). An empirical study on the factors influencing the acceptance of smartwork. Palarch’s Journal of Archaeology of Egypt/Egyptology, 17(7), 19–41. https://doi.org/10.29214/damis.2013.32.1.002
Ro, C. (2021). Why we may have to re-learn to socialise. Retrieved on February 1, 2022, from https://www.bbc.com/worklife/article/20210218-why-we-may-have-to-re-learn-to-socialise
Rufrancos, H., Power, M., Pickett, K. E., & Wilkinson, R. (2013). Income inequality and crime: A review and explanation of the time-series evidence. Sociology and Criminology, 1(1), e103.
Safira, J. E., & Baridwan, Z. (2018). The analysis of individual’s behavioral intention in using mobile banking based on TAM and UTAUT 2. Jurnal Ilmiah Mahasiswa FEB, Universitas Brawijaya, 6(2).
Saptoyo, R. (2021). 7 bantuan yang digelontarkan selama pandemic covid [7 aids distributed during the covid pandemic]. Retrieved on March 2, 2022, from https://www.kompas.com/tren/read/2021/08/17/133000065/7-bantuan-yang-digelontorkan-selama-pandemi-covid-19-?page=all
Sarstedt, M., Hair Jr, J. F., Nitzl, C., Ringle, C. M., & Howard, M. C. (2020). Beyond a tandem analysis of SEM and PROCESS: Use of PLS-SEM for mediation analyses! International Journal of Market Research, 62(3), 288-299.
Sarstedt, M., Ringle, C. M., & Hair, J. F. (2017). Partial least squares structural equation modeling. In Homburg, C., Klarmann, M. and Vomberg, A. (Eds), Handbook of market research. Heidelberg: Springer.
Senyo, P. K., & Osabutey, E. L. (2020). Unearthing antecedents to financial inclusion through FinTech innovations. Technovation, 98, 102155.
Serrano-Cinca, C., Gutiérrez-Nieto, D., & López-Palacios, L. (2015). Determinants of default in P2P lending. Plos One, 10(10), 1–22. https://doi:10.1371/journal.pone.0139427.
Shahid, B., & Ahmad, I. (2016). The impact of organizational learning on organizational corruption and the deviant workplace behavior: The case study of public sector organizations in Pakistan. NUML International Journal of Business & Management, 11(2), 50-67.
Ssekiziyivu, B., Mwesigwa, R., Joseph, M., & Nabeta, I. N. (2017). Credit allocation, risk management and loan portfolio performance of MFIs-A case of Ugandan firms. Cogent Business & Management, 4(1), 1-13. https://doi.org/10.1080/23311975.2017.1374921
Stone, B., & Maury, R. V. (2006). Indicators of personal financial debt using a multi-disciplinary behavioral model. Journal of economic psychology, 27(4), 543-556.
Sugandi, E. A. (2021). The COVID-19 Pandemic and Indonesia’s Fintech Markets. ADBI Working Paper 1281. Tokyo: Asian Development Bank Institute. Available: https://www.adb.org/publications/covid-19-pandemic-indonesia-fintech-markets
Suryono, R. R., Budi, I., & Purwandari, B. (2021). Detection of fintech P2P lending issues in Indonesia. Heliyon, 7(4), e06782.
Telysheva, N. N., Erofeeva, M. A., Ulyanova, I. V., Pokrovskaya, S. V., Nikitskaya, E. A., Gorokhova, I. V., & Kochetkov, I. G. (2019). Socio-ecological determinants in the deviant behavior formation system. Ekoloji, 28(107), 5077-5081.
Tham, K. W., Dastane, O., Johari, Z., & Ismal, N. B. (2019). Perceived risk factors affecting consumers’ online shopping behaviour. The Journal of Asian Finance, Economics and Business, 6(4), 246–260. https://doi.org/10.13106/jafeb.2019.vol6.no4.249
Thomas, V. F., & Jannah, S. M. (2020). Ekonomi sulit, kredit bermasalah di masa pandemic potensial melonjak [The economy is difficult, non-performing loans during a pandemic have the potential to soar]. Retrieved on January 29, 2022 from https://tirto.id/ekonomi-sulit-kredit-bermasalah-di-masa-pandemi-potensial-melonjak-f52s
Todorof, M. (2018). Shariah-compliant FinTech in the banking industry. ERA Forum, 19(1), 1–17. doi:10.1007/s12027-018- 0505-8
Tokunaga, H. (1993), The use and abuse of consumer credit: Application of psychological theory and research. Journal of Economic Psychology, 14(2), 285-316.
Ursachi, G., Horodnic, I. A., & Zait, A. (2015). How reliable are measurement scales? External factors with indirect influence on reliability estimators. Procedia Economics and Finance, 20, 679-686.
Umar, M., Ji, X., Mirza, N., & Rahat, B. (2021). The impact of resource curse on banking efficiency: Evidence from twelve oil producing countries. Resources Policy, 72, 102080.
Wang, Y., Drabek, Z., & Wang, Z. (2022). The role of social and psychological related soft information in credit analysis: Evidence from a Fintech Company. Journal of Behavioral and Experimental Economics, 96, 101806.
Wang, X., Xu, Y. C., Lu, T., & Zhang, C. (2020). Why do borrowers default on online loans? An inquiry of their psychology mechanism. Internet Research, 30(4), 1203 – 1228.
Wimboh, S., Trinugroho, I., & Risfandy, T. (2020). What determine loan rate and default status in financial technology online direct lending? Evidence from Indonesia. Emerging Markets Finance and Trade, 56(2), 351-369.
Wiryanto, W. (2018). The comparison of Unescap’s characteristics of good governance and Islamic characteristics. Hasanuddin Economics and Business Review, 2(2), 123–141. doi: http:// dx.doi.org/10.26487/hebr.v2i2.1545
Worokinasih, S., & Potipiroon, W. (2019). Microfinance repayment performance of SMEs in Indonesia: Examining the roles of social capital and loan credit terms. The Journal of Behavioral Sciences, 14(1), 28-45.
Xu, J. J., & Chau, M. (2018). Cheap talk? The impact of lender-borrower communication on peer-to-peer lending outcomes. Journal of Management Information Systems, 35(1), 53–85. doi:10.1080/07421222.2018.1440776.
Yang, Y. (2019, August). Discussion on the factors affecting college students’ campus loan default from the perspective of behavioral finance. In 1st International Symposium on Economic Development and Management Innovation (EDMI 2019) (pp. 133-142). Atlantis Press.
Zhang, J., & Lester, D. (2008). Psychological tensions found in suicide notes: A test for the strain theory of suicide. Archives of Suicide Research, 12(1), 67-73.
Zhou, J., Li, W., Wang, J., Ding, S., & Xia, C. (2019). Default prediction in P2P lending from high-dimensional data based on machine learning. Physica A: Statistical Mechanics and its Applications, 534, 122370.